วารสารคณิตศาสตร์ Mathematical Journal 65(701) พฤษภาคม - สิงหาคม 2563
โดย สมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์ http://wmw.mathassociation.net Email: MathThaiOrg@gmail.com การเดินของม้าหมากรุกปิดแบบ $(1,2,2)$ บนกระดานหมากรุกขนาด $3 r \times 4 s \times 4 t$ เมื่อ $r \geq 1$ และ $s, t \geq 2$ A Closed (1, 2, 2)-Knight's Tour on the $3 r \times 4 s \times 4 t$ Chessboard, where $r \geq 1$ and $s, t \geq 2$

ศิริรัตน์ สิงหันต์ ${ }^{1, *}$ อัตถสิทธิ์ สินนา ${ }^{2}$ และ พีระพงษ์ เย็นทรวง ${ }^{3}$
1,2,3 ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยรามคำแหง กรุงเทพมหานคร 10240

Sirirat Singhun ${ }^{1, *}$ Adthasit Sinna ${ }^{2}$ and Pheerapong Yensuang ${ }^{3}$
 ${ }^{1,2,33}$ Department of Mathematics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240

Email: ${ }^{1}$ sin_sirirat@ru.ac.th ${ }^{2}$ adthasit@ru.ac.th ${ }^{3}$ Peerapong_at@hotmail.com

วันที่รับบทความ : 22 สิงหาคม 2562 วันที่แก้ไขบทความ : 12 ธันวาคม 2562 วันที่ตอบรับบทความ : 7 กุมภาพันธ์ 2563

บทคัดย่อ

บทความนี้นำเสนอการเดินของม้าหมากรุกบิดแบบ $(1,2,2)$ บนกระดานหมากรุกขนาด $3 r \times 4 s \times 4 t$ เมื่อ $r \geq 1$ และ $s, t \geq 2$
คำสำคัญ: การเดินของม้าหมากรุกปิด กระดานหมากรุก

[^0]
ABSTRACT

In this paper, a closed (1, 2, 2)-knight's tour on the $3 r \times 4 s \times 4 t$ chessboard, where $r \geq 1$ and $s, t \geq 2$, is obtained.

Keywords: Closed knight's tour, Chessboard

1. Introduction

A knight is an interesting chess piece on the chessboard because of its move. It moves like the L-shape, one square vertically or one square horizontally and then two squares at 90 degrees angle. Euler [4] was the first person to study the knight's moves on the chessboard. He found that, a knight can move from a square to every other squares exactly once and return to its starting square. This is called a closed knight's tour. Then, the chessboard is extended to an $m \times n$ chessboard, an array with m rows and n columns. The problem is which $m \times n$ chessboard contains a closed knight's tour. In 1991, Schwenk [4] answered this question.

Theorem 1.1 [4] The $m \times n$ chessboard with $m \leq n$ admits a closed knight's tour unless one or more of the following conditions holds:
(i) m and n are both odd; or
(ii) $m=1$ or 2 or 4 ; or
(iii) $m=3$ and $n=4$ or 6 or 8 .

Next, the knight's move was generalized by Chia [2] to move a squares vertically or a squares horizontally and then b squares at 90 degrees angle. It is called an (a,b)knight's move. An (1,2)-knight's move is an ordinary knight's move and a closed (1,2)-knight's tour is a closed knight's tour. The authors in [2] obtained necessary conditions for existence of a closed (a, b)-knight's tour on the $m \times n$ chessboard.

Theorem 1.2 [2] Suppose that the $m \times n$ chessboard admits a closed (a, b)-knight's tour, where $a<b$ and $m \leq n$. Then,
(i) $a+b$ is odd;
(ii) m or n is even;
(iii) $m \geq a+b$; and
(iv) $n \geq 2 b$.

Also, the chessboard is extended to the three-dimension chessboard called the $k \times m \times n$ chessboard. It is obtained from k copies of the $m \times n$ chessboard by putting each copy from the top to the bottom. We label each square by (l, i, j) where l is the level of the $k \times m \times n$ chessboard counting from the top to the bottom and (i, j) is the position of the square of the $m \times n$ chessboard. Note that it can be seen that a position of the three-dimension chessboard is a cube. Moreover, the (a, b)-knight's move is extended to an (a, b, c)-knight's move. If the knight moves with an (a, b, c)knight's move from cube (i, j, k) to cube (r, s, t), then $\{|r-i|,|s-j|,|t-k|\}=\{a, b, c\}$. That is, if the knight stands at cube (l, i, j), then the knight can move to at most 24 cubes: $(l \pm \mathrm{a}, i \pm \mathrm{b}, j \pm \mathrm{c}),(l \pm \mathrm{b}, i \pm \mathrm{a}, j \pm \mathrm{c})$, and $(l \pm \mathrm{c}, i \pm \mathrm{b}, j \pm \mathrm{a})$. Also, a closed (a, b, c-knight's tour is a series of (a, b, c)-knight's moves that visits every small cube of the $k \times m \times n$ chessboard. Bai et al. [1] obtained necessary conditions for existence of a closed (1, 2, 2)-knight's tour on the $k \times m \times n$ chessboard.

Theorem 1.3 [1] The $k \times m \times n$ chessboard with $k \leq m \leq n$ does not admit a closed (1,2,2)-knight's tour if one of the following conditions holds:
(i) k, m and n are odd;
(ii) $k \leq 2$;
(iii) $k=3$ and $\mathrm{m} \leq 7$;
(iv) $k=4$.

Moreover, the authors in [1] showed closed (1,2,2)-knight's tours on the $3 \times 4 s \times 4 t$ chessboard, where $s, t \geq 2$.

Theorem 1.4 [1] Suppose $s \geq 2$ and $t \geq 2$. Then, the $3 \times 4 s \times 4 t$ chessboard admits a closed (1, 2, 2)-knight's tour.

The knight's tour problem is converted to question about a certain graph. A graph that represents all (a, b, c)-knight's moves on the $k \times m \times n$ chessboard is a graph with mak vertices where each cube is replaced by a vertex and two vertices are joined by an edge if the knight can move by an (a, b, c)-knight's move between these cubes or vertices. Then, a closed (a, b, c)-knight's tour is a Hamiltonian cycle, a cycle that passed through each vertex exactly once, of the graph representing all (a, b, c)-knight's moves on the $k \times m \times n$ chessboard.

Motivated by these, this paper shows that the $3 r \times 4 s \times 4 t$ chessboard, where $r \geq 1$ and $s, t \geq 2$, contains a closed (1, 2, 2)-knight's tour (in Theorem 2.1).

2. Main Results

First, we recall the construction of a closed (1,2,2)-knight's tour on the $3 \times 4 s \times 4 t$ chessboard, where $s, t \geq 2$, in the proof of Theorem 1.4 as follows.

Algorithm 2.1 A closed (1,2,2)-knight's tour on the $3 \times 4 s \times 4 t$ chessboard, where $s, t \geq 2$, is obtained as follows.
(i) A closed knight's tour C of the first level of the $3 \times 4 s \times 4 t$ chessboard is obtained by Theorem 1 of [3]. (We roughly describe in Section 2.1.)
(ii) C is extended to a closed (1,2,2)-knight's tour $C^{*}: v_{1} v_{2} \ldots v_{n} v_{1}$ on the $3 \times 4 s \times 4 t$ chessboard where $v_{1}, v_{4}, v_{7}, \ldots, v_{n-2}$ (respectively $v_{2}, v_{5}, v_{8}, \ldots, v_{n-1}$ and v_{3}, $v_{6}, v_{9}, \ldots, v_{n}$) are vertices on the first (respectively second and third) level of the $3 \times 4 s \times 4 t$ chessboard.
(iii) If $C:\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right) \ldots\left(j_{4 s}, j_{4 t}\right)\left(j_{1}, j_{1}\right)$ is a closed knight's tour of the $4 s \times 4 t$ chessboard, where $r, s \geq 2$, then a path $P:\left(1, i_{1}, j_{1}\right)(2, \alpha, \beta)\left(3, i_{1}, j_{1}\right)\left(1, i_{2}, j_{2}\right)$ of C^{*} is constructed where

$$
(\alpha, \beta)= \begin{cases}\left(i_{1}+2, j_{1}+2\right) & \text { if } i_{1}(\bmod 4) \in\{1,2\}, j_{1}(\bmod 4) \in\{1,2\} \\ \left(i_{1}+2, j_{1}-2\right) & \text { if } i_{1}(\bmod 4) \in\{1,2\}, j_{1}(\bmod 4) \in\{0,3\} \\ \left(i_{1}-2, j_{1}+2\right) & \text { if } i_{1}(\bmod 4) \in\{0,3\}, j_{1}(\bmod 4) \in\{1,2\} \\ \left(i_{1}-2, j_{1}-2\right) & \text { if } i_{1}(\bmod 4) \in\{0,3\}, j_{1}(\bmod 4) \in\{0,3\}\end{cases}
$$

Repeat the above construction for the edge $\left(i_{2}, j_{2}\right)\left(i_{3}, j_{3}\right)$ by replacing i_{1} and j_{1} with i_{2} and j_{2}, respectively, and so on. Note that in the first level and the third level, we obtain the same closed knight's tour C.

In this paper, we have two main results as follows.
(i) Introduce new algorithm to find a closed knight's tour of the $4 s \times 4 t$ chessboard, where $s, t \geq 2$.
(ii) Construct a closed (1, 2, 2)-knight's tour of the $3 r \times 4 s \times 4 t$ chessboard, where $r \geq 1$ and $s, t \geq 2$.

2.1 The Construction of a Closed Knight's Tour of the $4 s \times 4 t$ Chessboard where

 $s, t \geq 2$Parberry's algorithm is to find a closed knight's tour in all square-like chessboards, such as $n \times n, n \times(n+1)$ and $n \times(n+2)$. Lin and Wei [3] improved Parberry's algorithm to an arbitrary rectangular $m \times n$ chessboard. Lin and Wei's algorithm on the $m \times n$ chessboard where $m \leq n$ has three steps as follows.

First, partition the $m \times n$ chessboard. If $m=3$, then partition into one $3 \times k$ for some $k<n$, and many 3×4 chessboards. If $4 \leq m \leq 10$, then divide into two rectangular chessboards. For $m>10$, divide into four quadrants.

Second, find closed knight's tours on each smaller rectangular chessboard.

Finally, combine all closed knight's tours on smaller chessboards to a closed knight's tour on the $m \times n$ chessboard.

In this section, we introduce the new algorithm to find a closed knight's tour on the $4 s \times 4 t$ chessboard where $s, t \geq 2$. Our algorithm does not divide the $4 s \times 4 t$ chessboard into two or four small chessboards. We start with the 8×8 chessboard and its closed knight's tour. The extension of the 8×8 chessboard to the $4 s \times 4 t$ chessboard is the combination of the small chessboard with four columns chessboard on the right-side or with four rows chessboard on the bottom of the 8×8 chessboard. While Lin and Wei's algorithm finds closed knight's tours on each smaller chessboard, our construction obtains cycles on small chessboards, $4 \times 4,4 \times 8$ and 8×4 chessboards. Finally, connect each cycle with the closed knight's tour on the 8×8 chessboard to obtain a closed knight's tour on the combined chessboard.

For our construction, we give sequences of the knight's moves by labeling each square of the chessboard by numbers or letters. Thus, readers can consider cycle in appropriate direction by following each process of the construction from the smaller chessboards, $4 \times 4,4 \times 8,8 \times 4$ and 8×8 chessboards, and then obtain a Hamiltonian cycle or a closed knight's tour on $4 s \times 4 t$ chessboard where $s, t \geq 2$ as follows.

Process 1: Construct a closed knight's tour C:1-2-3-‥-64-1 on the 8×8 chessboard as shown in Figure 2.1(a).

Process 2: Construct four 8-cycles on the 8×4 chessboard, called C_{1}, C_{2}, C_{3} and C_{4} where C_{1} : 1-2-3-4-5-6-7-8-1, $C_{2}: s-t-u-v-w-x-y-z-s, C_{3}: A-B-C-D-E-F-G-H-A$, and C_{4} : a-b-c-d-e-f-g-h-a, as shown in Figure 2.1(b).

1	50	5	54	7	58	19	60
4	53	2	63	30	61	8	57
49	64	51	6	55	20	59	18
52	3	48	29	62	31	56	9
27	44	25	38	21	34	17	32
24	47	28	41	14	39	10	35
43	26	45	22	37	12	33	16
46	23	42	13	40	15	36	11

(a)

(b)

Figure 2.1 (a) A closed knight's tour on the 8×8 chessboard and (b) Four 8-cycles on the 8×4 chessboard

Process 3: Construct a closed knight's tour on the 8×12 chessboard from a closed knight's tour of the 8×8 chessboard and four 8 -cycles of the 8×4 chessboard by

- putting the 8×8 chessboard on the left of the 8×4 chessboard,
- deleting edges 8-9, 16-17, 32-33, and 56-57 of $C, 7-8$ of $C_{1}, y-z$ of C_{2}, D-E of C_{3}, and d-e of C_{4}, and
- joining 8 of C with \boldsymbol{z} of $C_{2}, 9$ of C with \boldsymbol{y} of $C_{2}, 16$ of C with E of $C_{3}, 17$ of C with D of $C_{3}, 32$ of C with d of $C_{4}, 33$ of C with e of $C_{4}, 56$ of C with 7 of C_{1}, and 57 of C with 8 of C_{1}, as shown in Figure 2.2.

1	50	5	54	7	58	19	60	1	s	A	a
4	53	2	63	30	61	8	57	B	b	2	t
49	64	51	6	55	20	59	18	\boldsymbol{z}	8	h	H
52	3	48	29	62	31	56	9	c	C	\mathbf{u}	3
27	44	25	38	21	34	17	32	7	y	G	g
24	47	28	41	14	39	10	35	D	d	4	v
43	26	45	22	37	12	33	16	\boldsymbol{x}	6	f	F
46	23	42	13	40	15	36	11	e	E	\mathbf{w}	5

Figure 2.2 A closed knight's tour on the 8×12 chessboard

Process 4: The $8 \times 4 t$ chessboard, where $t \geq 4$, is obtained from the 8×12 chessboard and $t-3$ copies of the 8×4 chessboards by putting 8×12 chessboard on the left of $t-3$ consecutive copies of the 8×4 chessboards. We do two steps to obtain the $8 \times 4 t$ chessboard.
4.1 Connect four 8 -cycles of each of $t-3$ consecutive of the 8×4 chessboard by - for the $i^{\text {th }}$ copy, deleting edges 3-4 of $C_{1}, t-u$ of C_{2}, G-H of C_{3} and a-h of C_{4},

- for the $(i+1)^{\text {th }}$ copy, deleting edges $7-8$ of $C_{1}, s-z$ of $C_{2}, C-D$ of C_{3} and b-c of C_{4}, and
- joining 3 of the $i^{\text {th }}$ copy with 8 of the $(i+1)^{\text {th }}$ copy, 4 of the $i^{\text {th }}$ copy with 7 of the $(i+1)^{\text {th }}$ copy, t of the $i^{\text {th }}$ copy with s of the $(i+1)^{\text {th }}$ copy, u of the $i^{\text {th }}$ copy with z of the $(i+1)^{\text {th }}$ copy, H of the $i^{\text {th }}$ copy with C of the $(i+1)^{\text {th }}$ copy, G of the $i^{\text {th }}$ copy with D of the $(i+1)^{\text {th }}$ copy, a of the $i^{\text {th }}$ copy with b of the $(i+1)^{\text {th }}$ copy, h of the $i^{\text {th }}$ copy with c of the $(i+1)^{\text {th }}$ copy, as shown in Figure 2.3.

Then, the $8 \times 4(t-3)$ chessboard is obtained from $t-3$ copies of the 8×4 chessboard by joining each of $t-3$ consecutive copies and it contains four cycles.
4.2 Connect a closed knight's tour on the 8×12 chessboard with four 8 -cycles of the first copy of the 8×4 chessboard. Since the last four columns of the 8×12 chessboard is obtained from the 8×4 chessboard, we can use the algorithm in step 4.1 to obtain a closed knight's tour on the combined chessboards.

1	50	5	54	7	58	19	60	1	s	A	a
4	53	2	63	30	61	8	57	B	b	2	t
49	64	51	6	55	20	59	18	z	8	h	H
52	3	48	29	62	31	56	9	c	C	u	3
27	44	25	38	21	34	17	32	7	y	G	g
24	47	28	41	14	39	10	35	D	d	4	v
43	26	45	22	37	12	33	16	x	6	f	F
46	23	42	13	40	15	36	11	e	E	w	5

$i^{\text {th }}$ copy				$(i+1)^{\text {th }}$ copy			
1	s	A	a	1	s	A	a
B	b	2	t	B	b	2	t
z	8	h	H	z	8	h	H
c	C	u	3	c	C	u	3
7	y	G	g	7	y	G	g
D	d	4	v	D	d	4	v
x	6	f	F	x	6	f	F
e	E	w	5	e	E	w	5

Figure 2.3 A closed knight's tour on the $8 \times 4 t$ chessboard, where $t \geq 4$

Note that (i) when Process 4 ends, we obtain a closed knight's tour on the $8 \times 4 t$ chessboard, and (ii) if we anti-clockwise rotate the 8×4 chessboard, we obtain the 4×8 chessboard, and also obtain four 8-cycles.

Process 5: Construct a closed knight's tour on the 12×8 chessboard from a closed knight's tour of the 8×8 and four 8 -cycles of the 4×8 chessboards by

- deleting edges 11-12, 36-37, 22-23, and 42-43 of C, and 3-4 of $C_{1}, t-u$ of C_{2}, A-H of C_{3}, and $f-g$ of C_{4}
- joining 11 with f, 12 with g, 36 with 4, 37 with 3,22 with $H, 23$ with A, 43 with t and 42 with u, as shown in Figure 2.4.

Figure 2.4 A closed knight's tour on the 12×8 chessboard

Process 6: Construct four 4 -cycles on the 4×4 chessboard, called D_{1}, D_{2}, D_{3} and D_{4} where $D_{1}: 1-2-3-4-1, D_{2}: s-t-u-v-s, D_{3}: A-B-C-D-A$, and $D_{4}: a-b-c-d-a$, as shown in Figure 2.5.

1	s	A	a
B	b	2	t
v	4	d	D
c	C	u	3

Figure 2.5 Four 4-cycles on the 4×4 chessboard
Process 7: Construct four 12-cycles on the 4×12 chessboard from four 8 -cycles of the 4×8 chessboard and four 4-cycles of the 4×4 chessboards by

- deleting edges 5-6 of C_{1}, w-x of C_{2}, E-F of C_{3} and e-f of C_{4}, and 1 - 4 of $D_{1}, s-v$ of D_{2}, B-C of D_{3}, and b-c of D_{4}
- joining F with B, E with C, e with 4, f with 1,5 with $\mathrm{b}, 6$ with c, w with s, x with v, as shown in Figure 2.6

a	t	H	3	g	v	F	5	1	s	A	a
A	2	h	u	G	4	f	w	B	b	2	t
s	b	8	C	y	d	6	E	v	4	d	D
1	B	z	c	7	D	x	e	c	c	u	3

Figure 2.6 Four 12-cycles on the 4×12 chessboard
Process 8: The $4 \times 4 t$ chessboard, where $t \geq 4$, is obtained from the 4×12 chessboard and $t-3$ copies of the 4×4 chessboards by putting the 4×12 chessboard on the left of $t-3$ consecutive copies of the 4×4 chessboards. We do two steps to obtain the $4 \times 4 t$ chessboard.
8.1 Connect four 8-cycles of each of $t-3$ consecutive copies of the 4×4 chessboards by

- for the $\mathrm{i}^{\text {th }}$ copy, deleting edges 2-3 of $D_{1}, t-u$ of D_{2}, A-D of D_{3}, a-d of D_{4},
- for the $(i+1)^{\text {th }}$ copy, deleting edges $1-4$ of $D_{1}, s-v$ of D_{2}, B-C of $D_{3}, b-c$ of D_{4}, and
- joining 2 of the $i^{\text {th }}$ copy with 1 of the $(i+1)^{\text {th }}$ copy, 3 of the $i^{\text {th }}$ copy with 4 of the $(i+1)^{\text {th }}$ copy, t of the $i^{\text {th }}$ copy with s of the $(i+1)^{\text {th }}$ copy, u of the $i^{\text {th }}$ copy with v
of the $(i+1)^{\text {th }}$ copy, A of the $i^{\text {th }}$ copy with B of the $(i+1)^{\text {th }}$ copy, D of the $i^{\text {th }}$ copy with C of the $(i+1)^{\text {th }}$ copy, a of the $i^{\text {th }}$ copy with b of the $(i+1)^{\text {th }}$ copy, d of the $i^{\text {th }}$ copy with c of the $(i+1)^{\text {th }}$ copy, as shown in Figure 2.7.

4×12

Figure 2.7 Four cycles on the $4 \times 4 t$ chessboard
Then, the $4 \times 4(t-3)$ chessboard is obtained from $t-3$ copies of the 4×4 chessboard by joining each of $t-3$ consecutive copies and it contains four cycles.
8.2 Connect four 12-cycles of the 4×12 chessboard with four 4-cycles of the first copy of the 4×4 chessboard. Since the last four columns of the 4×12 chessboard is obtained from the 4×4 chessboard, we can use the algorithm in step 8.1 to obtain four cycles on the combined chessboards.

Then, the $4 \times 4 t$ chessboard contains four cycles.
Process 9: Construct a closed knight's tour on the $12 \times 4 t$ chessboard, where $t \geq 2$. If $t=2$, put the 8×8 chessboard on the top of the 4×8 chessboard. If $t=3$, put the 8×12 chessboard on the top of the 4×12 chessboard. If $t \geq 4$, put the $8 \times 4 t$ chessboard (in Process 4) on the top of the $4 \times 4 t$ chessboard (in Process 8). Here, we note that the 8×12 chessboard and the $8 \times 4 t$ chessboard, where $t \geq 4$, are obtained from the 8×8 chessboard. In either case,

- delete edges 11-12, 36-37, 22-23 and 42-43 of the 8×8 chessboard and edges $\mathrm{f}-\mathrm{g}, 3-4, \mathrm{~A}-\mathrm{H}$ and $t-u$ of the 4×8 chessboard, and
- join 11 with f, 12 with g, 36 with 4, 37 with 3,22 with $H, 23$ with A, 43 with t and 42 with u, as shown in Figure 2.8.

Note that when Process 9 ends, we obtain a closed knight's tour on the $12 \times 4 t$ chessboard, where $t \geq 2$.

Figure 2.8 A closed knight's tour on the $12 \times 4 t$ chessboard
Process 10: Construct a closed knight's tour on the $4 s \times 4 t$ chessboard, when $s \geq 2$. If $s=2$, then the $8 \times 4 t$ chessboard is obtained from process 4 . If $s=3$, then the $12 \times$ $4 t$ chessboard is obtained from process 9 . If $s \geq 4$, then put the $12 \times 4 t$ chessboard on the top of $s-3$ consecutive copies of the $4 \times 4 t$ chessboards. We do two steps to obtain a closed knight's tour on the $4 s \times 4 t$ chessboard.
10.1 Connect four cycles of each of $s-3$ consecutive copies of the $4 \times 4 t$ chessboards by

- for the $i^{\text {th }}$ copy, deleting edges $1-8$ of C_{1}, s-z of C_{2}, B-C of C_{3}, b-c of C_{4},
- for the $(i+1)^{\text {th }}$ copy, deleting edges $2-3$ of $C_{1}, t-u$ of C_{2}, A-H of C_{3}, a-h of C_{4}, and
- joining 1 of the $i^{\text {th }}$ copy with 2 of the $(i+1)^{\text {th }}$ copy, 8 of the $i^{\text {th }}$ copy with 3 of the $(i+1)^{\text {th }}$ copy, s of the $i^{\text {th }}$ copy with t of the $(i+1)^{\text {th }}$ copy, z of the $i^{\text {th }}$ copy withu of the $(i+1)^{\text {th }}$ copy, B of the $i^{\text {th }}$ copy with A of the $(i+1)^{\text {th }}$ copy, C of the $i^{\text {th }}$ copy with H
of the $(i+1)^{\text {th }}$ copy, b of the $i^{\text {th }}$ copy with a of the $(i+1)^{\text {th }}$ copy, c of the $i^{\text {th }}$ copy with h of the $(i+1)^{\text {th }}$ copy, as shown in Figure 2.9.

Figure 2.9 A closed knight's tour on the $4 s \times 4 t$ chessboard, when $s, t \geq 2$
10.2 Connect the closed knight's tour on the $12 \times 4 t$ chessboard with four cycles of the first copy of the $4 \times 4 t$ chessboard. Since the first eight columns of the $4 \times 4 t$ chessboard is obtained from the 4×8 chessboard, we can use the algorithm in step 10.1 to obtain a closed knight's tour on the combined chessboards.

2.2 The Construction of a Closed (1, 2, 2)-Knight's Tour of the $3 r \times 4 s \times 4 t$

 Chessboard, where $r \geq 1$ and $s, t \geq 2$First, we use Algorithm 2.1 to construct a closed (1,2,2)-knight's tour on the $3 \times 4 s \times 4 t$ chessboard by using a closed knight's tour in Section 2. 1. In Figure 2. 10,
the closed knight's tours C from Section 2.1 are shown in the first and the third levels of the $3 \times 8 \times 8$ chessboard. Thus, we may say that small cubes of the $3 \times 8 \times 8$ chessboard are named by numbers of the closed knight's tour. In the second level, the number with a circle, \triangle, is the position (obtained by Algorithm 2.1(iii)) that the knight can move to cube x in the first level or cube x in the third level by an (1,2,2)knight's move. Also, by Algorithm 2.1 (iii), for each number x in the first level we obtain a path $P_{x}: x-x-(x+1)$, where the first x and $(x+1)$ in P_{x} are in the first level and x $\operatorname{after} \times$ in P_{x} is in the third level. Connect each path P_{x}, we obtain a Hamiltonian cycle or a closed (1,2,2)-knight's tour C^{*}. In Figure 2.10, a closed ($1,2,2$)-knight's tour C^{*} is
1-(1)-1-2-(2)-2-3-(3)-3-... -64-(64)-64-1.

Next, we extend the $3 \times 4 s \times 4 t$ chessboard, where $s, t \geq 2$, to the $3 r \times 4 s \times 4 t$ chessboard, where $r>1$ and $s, t \geq 2$, we use r copies of the closed ($1,2,2$)-knight' s tour C^{*} of the $3 \times 4 s \times 4 t$ chessboard by putting each copy from the top to the bottom. We do the following.

- Delete edge $(2,3,3)-(3,1,1)$ of the $i^{\text {th }}$ copy and edge $(1,4,1)-(2,2,3)$ of the $(i+1)^{\text {th }}$ copy for all $i=1,2,3, \ldots, r-1$.
- Join $(2,3,3)$ of the $i^{\text {th }}$ copy with $(1,4,1)$ of the $(i+1)^{\text {th }}$ copy and $(3,1,1)$ of the $i^{\text {th }}$ copy with $(2,2,3)$ of the $(i+1)^{\text {th }}$ copy for all $i=1,2,3, \ldots, r-1$.

In Figure 2.10, edges (1) 1 of the first copy and 52-(52) of the second copy are deleted and then join (1) with 52 and 1 with (52).

Then, we obtain a closed (1,2,2)-knight's tour on the $3 r \times 4 s \times 4 t$ chessboard where $r \geq 1$ and $s, t \geq 2$ in the following theorem.

Theorem 2. 1 Suppose $r \geq 1$ and $s, t \geq 2$. Then, the $3 r \times 4 s \times 4 t$ chessboard admits a closed (1, 2, 2)-knight's tour.

3. Conclusion

This paper shows a closed (1,2,2)-knight's tour on the $3 r \times 4 s \times 4 t$ chessboard, where $r \geq 1$ and $s, t \geq 2$. This research extends the result of Bai et. al. [1] from $r=1$ to $r>1$. However, this is a special case of the $k \times m \times n$ chessboard where k, m and n are positive integers. The remaining cases are open problems. Moreover, we shall mention that the condition $k \leq m \leq n$ is quoted for the existence of a closed (1, 2, 2)-knight's tour on the $k \times m \times n$ chessboard in Theorem 1.3, while our result in Theorem 2.1 does not give the relation between r, s and t. There are no problems because of our construction.

Figure 2.10 A closed (1, 2, 2)-knight's tour on the $6 \times 8 \times 8$ chessboard

References

[1] Bai, S., Yang, X.-F., Zhu, G.-B., Jiang, D.-L. and Huang, J. (2010). Generalized Knight’s Tour on 3D Chessboards. Discrete Applied Mathematics, 158 (16), p. 1727-1731.
[2] Chia, G.L. and Ong, S-H. (2005). Generalized Knight's Tours on Rectangular Chessboards. Discrete Applied Mathematics, 150, p. 80-98.
[3] Lin, S.-S. and Wei, C.-L. (2005). Optimal Algorithms for Constructing Knight's Tour on Arbitrary $\mathrm{n} \times \mathrm{m}$ Chessboards. Discrete Applied Mathematics, 146, p. 219-232.
[4] Schwenk, A.J. (1991). Which Rectangular Chessboards Have a Knight's Tour?. Mathematics Magezine, 64(5), p. 325-332.

หมายเหตุ ท่านสามารถอ่านบทความที่มีภาพประกอบเป็นภาพสีที่มีความละเอียดสูง ได้ที่ https://ph02.tci-thaijo.org/index.php/MJMATh/article/view/210559 หรือ

[^0]: * ผู้เขียนหลัก

